C	uestio	n Answer	Marks	Guidance		
1	(i)	Transformation A is a reflection in the <i>y</i> -axis.	B1			
		Transformation B is a rotation through 90° clockwise about the origin.	B1			
		V5	[2]			
1	(ii)	$(0 \ 1)(-1 \ 0) \ (0 \ 1)$	M1	Attempt to multiply in correct order		
		$ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} $	A1	cao		
			[2]			
1	(iii)	Reflection in the line $y = x$	[2] B1			
		·	[1]			
2	(i)	1 1 2 (2 5)2	M1	Use of Pythagoras		
		$ z_1 = \sqrt{3^2 + (3\sqrt{3})} = 6$	A1	cao		
		$3\sqrt{3}$ π	M1			
		$ z_1 = \sqrt{3^2 + (3\sqrt{3})^2} = 6$ $\arg(z_1) = \arctan\frac{3\sqrt{3}}{3} = \frac{\pi}{3}$	A1	cao		
			[4]			
2	(ii)	$5 5\sqrt{3}$.	M1	May be implied		
		$z_2 = \frac{5}{2} + \frac{5\sqrt{3}}{2}j$	A1	cao		
		2 2	[2] E1			
2	(iii)	Because z_1 and z_2 have the same argument	E1	Consistent with (i)		
			[1]			
3		α α -8 α	M1	Attempt to use sum of roots		
		$\alpha + \frac{\alpha}{6} + \alpha - 7 = \frac{-8}{3} \Rightarrow \alpha = 2$	A1	Value of α (cao)		
		Other roots are -5 and $\frac{1}{3}$				
		Product of roots = $\frac{-q}{3} = \frac{-10}{3} \Rightarrow q = 10$	M1 A1	Attempt to use product of roots $q = 10$ c.a.o.		
		Sum of products in pairs = $\frac{p}{3} = -11 \Rightarrow p = -33$	M1 A1	Attempt to use sum of products of roots in pairs $p = -33$ cao		

Question	Answer	Marks	Guidance
	OR, for final four marks		
	(x-2)(x+5)(3x-1)	M1	Express as product of factors
	$=3x^3+8x^2-33x+10$	M1	Expanding
	$\Rightarrow p = -33 \text{ and } q = 10$	A1	p = -33 cao
		A1	q = 10 cao
		[6]	
4	$\left \frac{3}{x-4} > 1 \Rightarrow 3\left(x-4\right) > \left(x-4\right)^2 \right $	M1*	Multiply through by $(x-4)^2$
	$\Rightarrow 0 > x^2 - 11x + 28$		
	$\Rightarrow 0 > (x-4)(x-7)$	M1dep*	Factorise quadratic
	$\Rightarrow 4 < x < 7$	B2	One each for $4 < x$ and $x < 7$
	OR	3.54.0	
	$\frac{3}{x-4} - 1 > 0 \implies \frac{7-x}{x-4} > 0$	M1*	Obtain single fraction > 0
	Consideration of graph sketch or table of values/signs	M1dep*	
	$\Rightarrow 4 < x < 7$	B2	One each for $4 < x$ and $x < 7$
	OR		
	$3 = x - 4 \Rightarrow x = 7$ (each side equal)		
	x = 4 (asymptote) Critical values at $x = 7$ and $x = 4$	M1*	Identification of critical values at $x = 7$ and $x = 4$
	Consideration of graph sketch or table of values/signs	M1dep*	Identification of critical values at $x = 7$ and $x = 4$
	4 < x < 7	B2	One each for $4 < x$ and $x < 7$
	OR		
	Consider inequalities arising from both $x < 4$ and $x > 4$	M1*	
	Solving appropriate inequalities to their $x > 7$ and $x < 7$	M1dep*	
	4 < x < 7	B2	One for each $4 < x$ and $x < 7$, and no other solutions
		[4]	

4755 Mark Scheme June 2012

Q	Question		Answer	Marks	Guidance
5	(i)		1 1 $2r+3-(2r+1)$ 2	M1	Attempt at common denominator
			$\frac{1}{2r+1} - \frac{1}{2r+3} = \frac{2r+3-(2r+1)}{(2r+1)(2r+3)} = \frac{2}{(2r+1)(2r+3)}$	A1	
			- ()(-) ()(-)	[2]	
5	(ii)		30 1 1 30 [1 1]	M1	Use of (i); do not penalise missing factor of $\frac{1}{2}$
	(11)		$\sum_{r=1}^{30} \frac{1}{(2r+1)(2r+3)} = \frac{1}{2} \sum_{r=1}^{30} \left[\frac{1}{2r+1} - \frac{1}{2r+3} \right]$	1411	Osc of (1), do not penalise missing factor of $\frac{1}{2}$
			$= \frac{1}{2} \left[\left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \left(\frac{1}{59} - \frac{1}{61} \right) + \left(\frac{1}{61} - \frac{1}{63} \right) \right]$	M1	Sufficient terms to show pattern
			1(1 1) 10	M1	Cancelling terms
			$=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{63}\right)=\frac{10}{63}$	A1	Factor ½ used
			2 (0 00) 00	A1	oe cao
				[5]	
6	(i)		$a_2 = 3 \times 2 = 6, a_3 = 3 \times 7 = 21$	B1	cao
				[1]	
6	(ii)		When $n = 1$, $\frac{5 \times 3^0 - 3}{2} = 1$, so true for $n = 1$	B1	Showing use of $a_n = \frac{5 \times 3^{n-1} - 3}{2}$
			Assume $a_k = \frac{5 \times 3^{k-1} - 3}{2}$	E1	Assuming true for $n = k$
			$\Rightarrow a_{k+1} = 3\left(\frac{5\times 3^{k-1}-3}{2}+1\right)$	M1	a_{k+1} , using a_k and attempting to simplify
			$= \frac{5 \times 3^{k} - 9}{2} + 3 = \frac{5 \times 3^{k} - 9 + 6}{2}$ $= \frac{5 \times 3^{k} - 3}{2} = \frac{5 \times 3^{(k+1)-1} - 3}{2}$	A1	Correct simplification to left hand expression.
			But this is the given result with $k + 1$ replacing k . Therefore if it is true for $n = k$ it is also true for $n = k + 1$. Since it is true for $n = 1$, it is true for all positive integers.	E1 E1 [6]	May be identified with a 'target' expression using $n = k + 1$ Dependent on A1 and previous E1 Dependent on B1 and previous E1

C	Question		Answer	Marks	Guidance
7	(i)		$(-5, 0), (5, 0), (0, \frac{25}{24})$	B1 B1	-1 for each additional point
				B1	
7	(;;)			[3] B1	
'	(ii)		$x = 3$, $x = -4$, $x = -\frac{2}{3}$ and $y = 0$	B1	
			3	B1	
				B1	
				[4]	
7	(iii)		Some evidence of method needed e.g. substitute in 'large'	M1	
'	(111)		values or argument involving signs	1,11	
			Large positive $x, y \rightarrow 0^+$	B1	
			Large negative $x, y \rightarrow 0^-$	B1	
			Luige negative x, y 70	[3]	
7	(iv)		x=-4	B1* B1dep* B1 B1	4 branches correct Asymptotic approaches clearly shown Vertical asymptotes correct and labelled Intercepts correct and labelled

PMT

4755		Mark Scheme					
Q	uestion	Answer		Guidance			
8	(i)	$3(1+3j)^3 - 2(1+3j)^2 + 22(1+3j) + 40$	M1	Substitute $z = 1 + 3j$ into cubic			
		= 3(-26-18j)-2(-8+6j)+22(1+3j)+40 = $(-78+16+22+40)+(-54-12+66)j$	A1 A1	$(1+3j)^2 = -8+6j$, $(1+3j)^3 = -26-18j$			
		= 0 So $z = 1 + 3j$ is a root	A1	Simplification (correct) to show that this c z = 1 + 3j is a root			
			[4]				
8	(ii)	All cubics have 3 roots. As the coefficients are real, the complex conjugate is also a root. This leaves the third root, which must therefore be real.	E1	Convincing explanation			
			[1]				
8	(iii)	1–3j must also be a root	B1				
		Sum of roots = $-\frac{-2}{3} = \frac{2}{3}$ OR product of roots = $-\frac{40}{3}$	M1	Attempt to use one of $\sum \alpha, \alpha\beta\gamma, \sum \alpha\beta$			

			11111	
		= (-78 + 16 + 22 + 40) + (-54 - 12 + 66)j		
		= 0 So $z = 1 + 3j$ is a root	A1	Simplification (correct) to show that this comes to 0 and so $z = 1 + 3j$ is a root
			[4]	
(ii)		All cubics have 3 roots. As the coefficients are real, the complex conjugate is also a root. This leaves the third root, which must therefore be real.	E1	Convincing explanation
			[1]	
(iii)		1–3j must also be a root	B1	
		Sum of roots = $-\frac{-2}{3} = \frac{2}{3}$ OR product of roots = $-\frac{40}{3}$	M1	Attempt to use one of $\sum \alpha, \alpha \beta \gamma, \sum \alpha \beta$
		$\mathbf{OR} \sum \alpha \beta = \frac{22}{3}$		
		$(1+3j)+(1-3j)+\alpha=\frac{2}{3}$ OR $(1+3j)(1-3j)\alpha=-\frac{40}{3}$	A2,1,0	Correct equation
		OR $(1-3j)(1+3j) + (1-3j)\alpha + (1+3j)\alpha = \frac{22}{3}$		
		$\Rightarrow \alpha = \frac{-4}{3}$ is the real root	A1	Cao
		OR		
		$(z-1+3j)(z-1-3j) = z^2 - 2z + 10$	M1	Use of factors
			A1	Correct quadratic factor
		$3z^3 - 2z^2 + 22z + 40 \equiv (z^2 - 2z + 10)(3z + 4) = 0$	A1	Correct linear factor (by inspection or division)
		$\Rightarrow z = \frac{-4}{3}$ is the real root	A1	Cao
			[5]	
	,		(ii) All cubics have 3 roots. As the coefficients are real, the complex conjugate is also a root. This leaves the third root, which must therefore be real. (iii) $1-3j \text{ must also be a root}$ $Sum \text{ of roots} = -\frac{-2}{3} = \frac{2}{3} \text{OR product of roots} = -\frac{40}{3}$ $OR \sum \alpha \beta = \frac{22}{3}$ $(1+3j)+(1-3j)+\alpha = \frac{2}{3} OR(1+3j)(1-3j)\alpha = -\frac{40}{3}$ $OR (1-3j)(1+3j)+(1-3j)\alpha+(1+3j)\alpha = \frac{22}{3}$ $\Rightarrow \alpha = \frac{-4}{3} \text{ is the real root}$ OR $1-3j \text{ must also be a root}$ $(z-1+3j)(z-1-3j) = z^2 - 2z + 10$ $3z^3 - 2z^2 + 22z + 40 = (z^2 - 2z + 10)(3z + 4) = 0$	(ii) All cubics have 3 roots. As the coefficients are real, the complex conjugate is also a root. This leaves the third root, which must therefore be real. (iii) $ \begin{array}{c} \text{All cubics have 3 roots. As the coefficients are real, the complex conjugate is also a root. This leaves the third root, which must therefore be real.} [1] (iii) \begin{array}{c} 1-3j \text{ must also be a root} \\ \text{Sum of roots} = -\frac{-2}{3} = \frac{2}{3} \text{OR product of roots} = -\frac{40}{3} \\ \text{OR } \sum \alpha \beta = \frac{22}{3} \end{array} \begin{array}{c} \text{(1+3j)} + (1-3j) + \alpha = \frac{2}{3} \text{OR } (1+3j)(1-3j)\alpha = -\frac{40}{3} \\ \text{OR } (1-3j)(1+3j) + (1-3j)\alpha + (1+3j)\alpha = \frac{22}{3} \end{array} \Rightarrow \alpha = \frac{-4}{3} \text{ is the real root} \begin{array}{c} \text{OR} \\ 1-3j \text{ must also be a root} \\ (z-1+3j)(z-1-3j) = z^2 - 2z + 10 \end{array} \begin{array}{c} \text{Al} \\ \text{Al} \\ 3z^3 - 2z^2 + 22z + 40 = (z^2 - 2z + 10)(3z + 4) = 0 \Rightarrow z = \frac{-4}{3} \text{ is the real root} Al$

Question		on	Answer	Marks	Guidance	
9	(i)		$p = 7 \times (-4) + (-1) \times (-19) + (-1) \times (-9) = 0$	E1	AG must see correct working	
			$q = 2 \times 11 + 1 \times (-7) + k \times (2 - k)$	N/1		
				M1	AC C	
			$\Rightarrow q = 15 + 2k - k^2$	A1	AG Correct working	
	(0.0)			[3]		
9	(ii)		$\begin{pmatrix} 79 & 0 & 0 \end{pmatrix}$	B2	-1 each error	
			$\mathbf{AB} = \begin{bmatrix} 0 & 79 & 0 \end{bmatrix}$			
			$\mathbf{AB} = \left[\begin{array}{ccc} 0 & 79 & 0 \\ 0 & 0 & 79 \end{array} \right]$			
			(-4 -5 11)	M1	Use of B	
			$\mathbf{A}^{-1} = \frac{1}{79} \begin{pmatrix} -4 & -5 & 11 \\ -19 & -4 & -7 \\ -9 & -31 & 5 \end{pmatrix}$			
			$\begin{pmatrix} 79 \\ -9 \\ -31 \\ 5 \end{pmatrix}$			
				B1	1	
					$\frac{1}{79}$	
				A1	Correct inverse	
				[5]		
9	(iii)		(x) , $(-4 -5 11)(14)(2)$	M1	Attempt to pre-multiply by their A^{-1}	
			$\begin{vmatrix} y = \frac{1}{2} \\ -19 \end{vmatrix} - 4 - 7 \begin{vmatrix} -23 = -3 \end{vmatrix}$			
			$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{79} \begin{pmatrix} -4 & -5 & 11 \\ -19 & -4 & -7 \\ -9 & -31 & 5 \end{pmatrix} \begin{pmatrix} 14 \\ -23 \\ 9 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 8 \end{pmatrix} $			
			$\Rightarrow x = 2, y = -3, z = 8$	A1	SC A2 for x , y , z unspecified	
				A1	sSC B1 for A ⁻¹ not used or incorrectly placed.	
				A1		
				[4]		